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Bounding Gauged Skyrmion Masses
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Normally, standard (ungauged) skyrmion masses are proportional to the coupling of the Skyrme
term needed for stability, and so can grow to infinite magnitude with increasing coupling. In striking
contrast, when skyrmions are gauged, their masses are bounded above for any Skyrme coupling, and,
instead, are of the order of monopole masses, O(v/g), so that the coupling of the Skyrme term is
not very important. This boundedness phenomenon and its implications are investigated.

PACS numbers: 12.39.Dc, 11.10.Lm, 11.15.-q, 11.27.+d

I. INTRODUCTION

A remarkable feature of theories based upon SU(N)L × SU(N)R global chiral symmetries is the existence of
topologically stable field configurations known as skyrmions. The skyrmion carries a topological charge representing
the nontrivial homotopy group, Π3(SU(N)), the mapping of the gauge group SU(N) onto a time slice into the three
dimensions of space. This charge emulates baryon number, and thus skyrmions provide an effective model of the
baryons of QCD, and their matrix elements [1, 2, 3].

It is of general interest to consider the skyrmion in the presence of gauge interactions. There are perturbative gauge
interactions in nature which the skyrmion-as-baryon must experience, i.e., QED, and the electroweak interactions.
The skyrmion further experiences the ρ-meson [4], which has an effective description as a gauge field of isospin.
Indeed, gauging chiral Lagrangians promotes the Wess-Zumino term, which generates the global topological current
structure, to the Wess-Zumino-Witten term, which not only generates currents but their anomaly structure as well,
and is seen to be faithful to an underlying theory of quarks and gluons. Moreover, if one considers pure Yang-Mills
theories in higher dimensions that undergo compactification to D = 4, one generally finds that the D = 4 effective
description of KK-modes is a gauged chiral Lagrangian. The skyrmion then matches higher dimensional topological
objects [5, 6, 7]. There have also been interesting applications of gauged skyrmions in the context of technibaryon
decay [8].

In the present paper, we examine the impact of the diagonal gauging (i.e., the promotion of the diagonal subgroup
SU(2) (isospin) of the chiral group SU(2)L ×SU(2)R to a gauge group). In particular, we observe novel behavior for
the masses of gauge skyrmions which significantly departs from the global case.

The conventional (ungauged) skyrmion is a solution to the chiral model equations of motion [3, 9] supplemented
with a “Skyrme term.” The Skyrme term is required to stabilize the core structure, but one finds a sensitivity to
the strength of this term in the mass: the mass of the skyrmion is essentially proportional to the square-root of the
coupling coefficient of the Skyrme term. This term has to be input, by hand, or to be somehow justified as emerging
from a long-distance effective Lagrangian description of a more complicated system, e.g., from some shorter distance
scale physics in QCD.

The skyrmion solutions of particular gauged chiral models, however, exhibit unexpected behavior, even though
tantalizing hints of it could be gleaned from pioneering numerical studies of gauged skyrmions [10, 11, 12, 13].
Specifically, the mass of the skyrmion increases monotonically from zero with the Skyrme coupling, but does not go
to infinity as it would for ungauged skyrmions. Instead, the mass stabilizes to an upper bound, whose scale, O(v/g),
is “monopolic”, i.e., it is set by the gauge coupling and the characteristic spontaneous symmetry breaking scale. This
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limit conforms to the masses of magnetic monopoles, which likewise do not vary much above the minimal BPS values
[14].

For simplicity, we focus on plain Skyrme-Wu-Yang spherically symmetric hedgehogs. We discuss the simplest system
[7, 8], SU(2)L × SU(2)R with gauged diagonal SU(2)V ,

4πE(g, v, κ) ≡ 1

2

∫

d3xTrFijFij +
v2

2

∫

d3x
(

Tr[Dj , U
†][Dj , U ] + κ2Tr

(

[[Dj , U
†], [Di, U ]]

)2
)

, (1)

The spherical hedgehog Skyrme-Wu-Yang Ansatz[3, 15] (i.e. of unit winding/“baryon” number) is

Ai =
a(r) − 1

gr
ǫijk

τ j

2
x̂k, U = exp

(

if(r) x̂ · τ
)

= cos f(r) + ix̂ · τ sin f(r). (2)

(The exponent f(r) x̂ · τ ∼
∫

dx4 A4, amounts to the deconstruction Wilson line/link [7].)
This two-scale problem yields an energy E(g, v, κ) which has a lower, topological bound [12]. Moreover, it is

manifestly monotonic in the Skyrme coupling strength κ, because the ∂/∂κ derivative is positive semidefinite, while
all implicit dependence of the fields on κ vanishes on-shell (by use of the eqns of motion), and is thus irrelevant, as in
the case of the monopole mass varying as a function of the Higgs mass [14].

To familiarize the reader with the bounding arguments, we first summarize the standard results on the simplest,
B = 1, ungauged skyrmion [3] in Section II. We then define and examine the simplest, B = 1, gauged skyrmion;
we review lower bounds, Etopological [10, 11, 12, 13]; and, finally, we derive upper bounds for its mass, on the
basis of numerical investigation for asymptotically large couplings, in Section III. Asymptotically, we find this actual
(bounding) mass of the B = 1 simple skyrmion to be merely 2.06 Etopological. Our results are qualitatively unchanged
upon further introduction of a pion mass [13]—even though, as expected, the corresponding upper bound increases
with the mass of the pion. In the last Section, IV, we conclude with discussion and interpretation of the phenomenon.

II. REVIEW OF LOWER BOUNDS OF UNGAUGED SKYRMIONS

In the limit of decoupling of the gauge fields, g = 0, or equivalently, a = 1, (1) yields the standard single skyrmion
reviewed here. It is evident from scaling, below, that all activity occurs at scales of r = O(κ), so that E = O(κv2):

E(0, v, κ) =
v2

2

∫ ∞

0

dr

(

r2f ′2 + 2 sin2 f + κ2
sin4 f

r2
+ 2κ2 f ′2 sin2 f

)

(3)

=
v2

2

∫ ∞

0

dr

(

(rf ′ − κ
sin2 f

r
)2 + 2 sin2 f (1 − κf ′)2 + 6κf ′ sin2 f

)

.

The first two terms in the integrand are positive semi-definite. The last one is a total divergence, 12κπ2r2× the
topological (Chern-Simons) baryon density of the conventional skyrmion [1],

3κ

2
∂r(2f − sin 2f) =

κr2

2
ǫijkTr(U †∂iU U †∂jU U †∂kU) . (4)

Thus, its contribution to the energy is

Etopological =
3v2κ

4

(

2f(∞) − 2f(0)− sin 2f(∞) + sin 2f(0)
)

=
3π

2
κv2. (5)

Note that one could choose either sign in completing the above squares.
This is a Bogomol’ny topological lower bound. However, it cannot be saturated, as it does in the BPS monopole

case (There are no self-dual chiral fields [9]). Saturation would require both squares to vanish, which is impossible:
both f ′ = 1/κ, and κ sin f = r.

This lower bound melts away for vanishing Skyrme term κ = 0, and blows up for κ → ∞. Thus, there can be no
κ → ∞ upper bound for the ungauged skyrmion.

III. GAUGED SKYRMIONS AND THEIR UPPER AND LOWER BOUNDS

By contrast, when gauge fields are introduced, g 6= 0, κ-dependence drops out of the lower bound as κ → ∞;
moreover, as we show below, there is an upper bound for the gauged skyrmion above, remarkably close to the highest
lower bound.
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The full equation (1) then for the B = 1 Ansatz, with r and κ rescaled in units of gv, amounts to

E(g, v, κ) =
v

g

∫ ∞

0

dr

(

4a′2 +
2(a2 − 1)2

r2
+

r2f ′2

2
+ a2sin2 f + κ2a4

sin4 f

2r2
+ κ2 a2f ′2 sin2 f

)

, (6)

with boundary conditions a(0) = 1, a(∞) = 0; f(0) = 0, f(∞) = π.
The topological lower bound [12] is

Etopological >
2πv

√

g2 + ( 4

3κv )2
, (7)

which yields, in the limit κ → ∞, a lower bound of O(v/g), i.e., of the order of the BPS monopole mass. Once gauging
is switched on, 1/g2 and κ2 behave analogously to resistors in parallel: as κ blows up, it becomes irrelevant, leaving
the scale to be set by g.

The gauged skyrmion has been well studied numerically in refs [10, 11, 12, 13], which detail a remarkable branch
structure of solutions. For increasing Skyrme coupling κ, the energy of the simple (B = 1) skyrmion is seen to
increase, starting from 0. (Specifically, Fig 1 of ref [12], for increasing κgv, the gauged skyrmion energy E curves over,
in contrast to that of the ungauged skyrmion on the same graph.) In fact, we show that it flattens out asymptotically,
yielding an upper bound, as is the case for the ’tHooft-Polyakov monopole as a function of the Higgs mass [14]. This
bound is very close to the highest lower bound.

The full lower bound for the gauged case results from rewriting the above energy as

E(g, v, κ) =
v

g

∫ ∞

0

dr

(

(

4a′2 +
(3κ/4)2

1 + (3κ/4)2
a2 sin2(2f)

4

)

+
(3κ/4)2

1 + (3κ/4)2
a2 sin4 f + a2 sin2 f

( 1

1 + (3κ/4)2
+ κ2 f ′2

)

+
1

2

( r2f ′2

1 + (3κ/4)2
+ κ2a4

sin4 f

r2

)

+
1

2

( (3κ/4)2

1 + (3κ/4)2
r2f ′2 +

4(a2 − 1)2

r2

)

)

=
v

g

∫ ∞

0

dr

(

(

2a′ +
(3κ/4)

√

1 + (3κ/4)2
a sin(2f)

2

)2

+
(3κ/4)2

1 + (3κ/4)2
a2 sin4 f

+ a2 sin2 f
( 1
√

1 + (3κ/4)2
− κ f ′

)2

+
1

2

( rf ′

√

1 + (3κ/4)2
− κa2

sin2 f

r

)2

+
1

2

(

rf ′ (3κ/4)
√

1 + (3κ/4)2
+

2(a2 − 1)

r

)2

)

+
3κv

4g
√

1 + (3κ/4)2

∫ ∞

0

dr ∂r(2f − a2 sin 2f)

>
2πv

g
√

1 + (4/3κ)2
, (8)

since each term but the last (surface term) is positive semi-definite. As before, all these terms cannot be nullified
simultaneously, and thus the topological bound is not saturated, except in the degenerate case κ = 0, cf. [12]. The
highest value for this lower bound, 2πv/g, holds for κ → ∞; it will be seen that the actual energy is roughly twice
this, in that limit.

The Euler-Lagrange equations are

a′′ +
a(1 − a2)

r2
− a

4
sin2 f − κ2a

4
f ′2 sin2 f − κ2a3

4r2
sin4 f = 0, (9)

(r2 + 2κ2a2 sin2 f)f ′′ + 2rf ′ + 4κ2aa′f ′ sin2 f + κ2a2f ′2 sin(2f) − a2 sin(2f) − 2κ2a4

r2
sin3 f cos f = 0, (10)

with BCs:

a(0) = 1, a(∞) = 0; f(0) = 0, f(∞) = π. (11)

Study of actual numerical solutions for increasing κ2, (cf., e.g., branch B of ref [12]), reveals that the scales of the
two variables a and f tend to resolve as in Born-Oppenheimer problems, and the monopole in the large Higgs mass
limit [14]. Specifically, a asymptotes faster than f , which continues to evolve slowly after a has decayed to 0 by some
value r = R. Numerically, R ∼ 1.34, very weakly dependent on κ, for large κ2 ∼ 1000 (cf. Fig. 1).

http://au.arXiv.org/abs/hep-th/0409222
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FIG. 1: Numerical study of a; π − f(r); and r2f ′, the corresponding argument of eqn (14), for increasing values of κ2. It is
evident that the two variables tend to decouple, for sufficiently large κ2: the scales of a and f separate at R ∼ 1.34, demarcated
by the vertical dash-double-dot line. Note the abrupt transition of f ′ from null to πR/r2 behavior.

Specifically, for the proximate interval, [0, R],

f(r) ∼ 0, (12)

so that eqn (10) collapses, while (9) effectively reduces to

a′′ +
a(1 − a2)

r2
∼ 0, (13)

the celebrated Wu-Yang equation[15] for pure Yang-Mills theory. (Note, however, that this equation, by itself, is scale

http://au.arXiv.org/abs/hep-th/0409222
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invariant: the actual scale R is set through interaction with f . The range of a would spread out, left to itself, but the
Skyrme term disfavors overlap of a with f . In the limit, it forces a to attenuate inside the core, before f builds up at
R.) Hence a(r) is an attenuating function which reaches a(R) ∼ 0.

For the distant interval [R,∞), a ∼ 0, so that (9) collapses, while (10) reduces to

∂r(r
2f ′) ∼ 0, (14)

and hence f ∼ π(1 − R
r ).

Thus, for κ → ∞, dependence on κ dies out. For solutions (on-shell), the coefficient of κ2 in the energy collapses,

dE

d(κ2)
=

∂E

∂(κ2)
=

∫ ∞

0

dr

(

a2f ′2 sin2 f +
a4 sin4 f

2r2

)

∼ 1.62 κ−5/2 → 0. (15)

In the most important region, the neighborhood of R, activity is apparently dominated by the scale r ∼
√

κ; this
is quite unlike the characteristic scale of the ungauged skyrmion activity, r ∼ κ.

Since E is monotonic in κ, an upper bound results for (6) in this limit,

E(g, v, κ) ≤ E(g, v,∞) ∼ 12.95
v

g
. (16)

This upper bound is merely g
v E(g, v,∞) ∼ 2.06×2π, where 2π is the above-mentioned highest lower bound. In effect,

the mass of the gauged skyrmion varies from 0 to 12.95 v/g, as the Skyrme term ranges from zero to infinite strength.
Near zero, the Skyrme coupling κ sets the mass scale, but for large couplings the scale is set by the “monopole mass”
scale v/g.

In more numerical detail, for g
v E(g, v,∞) ∼ 12.95, the subleading behavior is

E(g, v, κ) = E(g, v,∞) − 6.68
v

g
κ−1/2 + O(κ−1). (17)

In Fig. 2, beyond E, Esk is also plotted. It represents the “Skyrme term”, i.e., the last two terms in eqn (6). The
decay of Esk goes like Esk ∼ 1.62κ−1/2, as indicated, so this component is subdominant to the contributions of the
Wu-Yang and the conventional chiral terms, the leading four terms in eqn (6). Since

Esk = κ2
dE

d(κ2)
= −1

4
κ−1/2

dE

d(κ−1/2)
, (18)

this is seen to be numerically consistent with the above expansion in κ−1/2 around κ−1/2 = 0.
The boundary condition for f(r) above may be effectively regarded as a “unit baryon charge constraint” [13]; to

enforce it more naturally, it is customary to add a pion mass term, λr2(1 − cos f) to the integrand of (6), arising out
of a term Tr(U + U †)− 4 in the chiral Lagrangian, where λ = 2(mπ/gv)2. However, addition of such a term does not
alter the qualitative conclusions above.

For example, for λ = 1, the upper bound is only somewhat higher,

g

v
E(g, v, κ) = 17.5 − 6.0 κ−1/2 + O(κ−1), (19)

as expected: since this mass term is positive-semidefinite, the skyrmion mass is a monotonically increasing function
of λ.

IV. DISCUSSION

Our present analysis probed the effects on skyrmionic masses of the presence of the diagonal gauge group. The
situation is reminiscent of the ’t Hooft-Polyakov monopole, for which a similar bound exists owing to gauge fields
[14]. While the monopole is a tangle of gauge, Goldstone, and Higgs fields; as the mass of the Higgs field is taken to
infinity with fixed VEV, the Higgs serves only to enforce boundary conditions. The monopole in this limit ends up
made purely of gauge fields (a Higgsless monopole, as in ref [16]), with a mass of O(MW /α). Analogously, the gauged
skyrmion in (6) consists of gauge fields and Higgs field skyrmions. But, in the interaction with very heavy would-be
skyrmions, the last two terms in that system, the “Skyrme term” (viz., Esk of Fig 2), become decreasingly relevant
in the energy. Thus, what would have been the infinitely massive skyrmion largely enforces boundary conditions
at R. The leading two terms in the energy (the gauge, or Wu-Yang, part) scale as 1/s with r → sr, and, left to

http://au.arXiv.org/abs/hep-th/0409222
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FIG. 2: Numerical study of the energy E, in units of v/g, for increasing κ2. The upper bound is at E(g, v,∞) ∼ 12.95. Also
plotted is Esk, representing the last two terms in eqn (6), the Skyrme term. Further plotted is the coefficient C of the leading
tail of f = π(1 − C/r + O(1/r2)) for large r, tending to πR in the limit κ → ∞. It may be instructive to note the contrast to
the π − 2.16/r2 asymptoting of the conventional ungauged skyrmion.

themselves, favor a spread-out integrand to maximize s. The next two terms (the chiral action terms) scale as s,
and favor core-shrinking, but the last two terms (the Skyrme terms) oppose this, and stabilize the core to ∼ R,
thereby constraining the gauge field within this range. The mass of the skyrmion ends up of the order characteristic
of monopole configurations, O(v/g), superficially oblivious of the Skyrme coupling.

We have thus found the effects of gauging to be significant in the limit of large Skyrme term coefficient. We
note, however, that one could [7] (and should [17]) include the effects of additional operators that explicitly involve
the Yang-Mills field strength, and are of the same dimension as the gauged Skyrme term utilized here, such as

http://au.arXiv.org/abs/hep-th/0409222
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TrFij [D
j , U †][Dj , U ] + h.c. There are potentially interesting effects of these, to be considered elsewhere [17].
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